Google Cloud Platform
Облачная платформа Google. Интеграция с гугловскими сервисами. Включает сервисы для облачных вычислений, хранения данных, безопасности, интеллектуальной обработки данных, интернета вещей и т.д.
Добавить отзыв
Добавить отзыв
Альтернативы Google Cloud Platform
Amazon Web Services, Microsoft Azure, Mail.Ru Cloud Solutions
Новости и обзоры Google Cloud Platform
2021. Google запускает новое поколение своих ИИ-чипов

Google представил следующее поколение своих чипов Tensor Processing Units (TPU) AI. Это четвертое уже поколение, которое, по словам Google, в два раза быстрее, чем предыдущая версия. Как отметил генеральный директор Google Сундар Пичаи, эти чипы затем объединяются в блоки с 4096 v4 TPU. Один модуль обеспечивает более одного экзафлопа вычислительной мощности. Google использует ИИ-чипы для работы многих собственных сервисов машинного обучения, но он также сделает это последнее поколение доступным для разработчиков как часть своей платформы Google Cloud. В то время как другие, в том числе Microsoft, решив использовать более гибкие ПЛИС для своих сервисов машинного обучения, Google заранее сделала ставку на эти нестандартные микросхемы. На их разработку уходит немного больше времени, и они быстро устаревают по мере изменения технологий, но могут обеспечить значительно лучшую производительность.
2020. В Google Cloud появились специализированные ИИ-сервисы для медицины

Google представил два новых когнитивных API-сервиса на своей облачной платформе: Healthcare Natural Language API и AutoML Entity Extraction for Healthcare. Первый предназначен для извлечения данных из неструктурированных медицинских текстов/документов. Второй - для простого создания моделей машинного обучения для извлечения именованных сущностей из медицинских документов и записей диалогов с пациентами. Оба сервис предоставляют API для интеграции в медицинские информационные системы.
2020. В Google Colaboratory появилась платная Pro-версия

Google представил платную версию своего сервиса для обучения нейросетей Colab Pro, которая стоит $9.99/месяц. Однако, хотя она платная, она (как и бесплатная) не предоставляет точно гарантированных ресурсов, и не предназначена для production обучения и выполнения моделей нейросетей. Однако, платные пользователи все-таки получат более приоритетный доступ к быстрым графическим процессорам T4 и P100 (в то время как пользователи обычной версии будут работать с видеокартами на K80). У них также будет приоритетный доступ к тензорным процессорам TPU. Кроме того, в Colab Pro подключение может сохраняться до 24 часов, а ограничения времени бездействия относительно мягкие. В бесплатной версии Colab время работы блокнотов может составлять не более 12 часов и они довольно быстро отключаются, находясь в режиме ожидания.
2019. Google предложил бизнесу TensorFlow Enterprise

TensorFlow - самый популярный фреймворк для машинного обучения, разработанный в Google. Он распространяется как open-source система с 2015 года, но теперь в Гугле решили подзаработать на нем и запустили услугу TensorFlow Enterprise, которая включает в себя расширенную поддержку и сопутствующие облачные сервисы на Google Cloud. Поддержка обеспечивает возможность продолжать использовать более старые версии Tensorflow, на которых компании уже создали свои ИИ модели. В облаке инженеры Гугла помогут клиентам быстро запустить виртуальные машины для глубокого обучения нейросетей или контейнеры Kubernetes.
2019. Google представил облачный сервис AI Platform для создания ML-моделей

Google представила бета-версию сервиса AI Platform. Пользователю предлагается выбрать один из готовых алгоритмов обработки данных, либо обучить и развернуть собственную модель. Платформа объединяет множество существующих и новых продуктов, которые в совокупности предоставляют собой полный цикл разработки моделей. AI Platform включает алгоритмы для обработки и разметки данных. Большая часть сервисов - платные, но есть и бесплатные. Например, вы можете свободно использовать Kuberflow, AI Hub, notebooks и с ограничениями использовать облачное хранилище.
2018. Google добавил бесплатные TPU на Colaboratory

Google предоставил бесплатный доступ к своим тензорным процессорам (tensor processing unit, TPU) на облачной платформе для машинного обучения Colaboratory. Тензорный процессор — это специализированная интегральная схема (ASIC), разработанная Google для задач машинного обучения с использованием библиотеки TensorFlow. Colaboratory — это облачная платформа от Google для продвижения технологий машинного обучения. На ней можно получить бесплатно виртуальную машину с установленными популярными библиотеками TensorFlow, Keras, sklearn, pandas и т.п. Самое удобное, что на Colaboratory можно запускать ноутбуки, похожие на Jupyter. Ноутбуки сохраняются на Google Drive, можно их распространять и даже организовать совместную работу. Вот так выглядит ноутбук на Colaboratory
2017. Google запустил бесплатный playground для обучения нейросетей - Colaboratory

Google запустил сервис Colaboratory (или Colab), предназначенный для учебных и экспериментальных проектов обучения нейросетей на Python. Это бесплатный облачный сервис на основе Jupyter Notebook, который предоставляет всё необходимое для машинного обучения прямо в браузере, даёт бесплатный доступ к виртуальным машинам с GPU. В Colaboratory предустановлены Tensorflow, Keras и практически все необходимые для работы Python-библиотеки. Файлы Colaboratory представляют собой обычные .ipynb «ноутбуки» и хранятся в Гугл-диске. Конечно, у сервиса есть некоторые ограничения, поэтому вы не сможете использовать его для production (для этого есть Google Cloud Platform). Однако, вы можете загрузить свои данные на Colab, обучить нейросеть и сохранить ее для дальнейшего использования в своих приложениях или сервисах.
2017. Google добавил поддержку GPU в своей облачной платформе

Для обучения нейросетей на базе популярных фреймворков TensorFlow, Torch, MXNet или Caffee нужно использовать мощные графические карты, стоимостью несколько тысяч долларов (типа Nvidia Tesla K80). Поэтому очень мило, когда облачные провайдеры предоставляют возможность арендовать машину с такой видеокартой за небольшую часовую плату. Такую возможность предоставляют уже Amazon и Microsoft. Теперь к ним присоединился еще и Google, добавив поддержку GPU в облаке Google Cloud Machine Learning. Стоимость аренды GPU с оперативной памятью 24 Гб - $0.70/час.
2017. Технология Google AutoML позволяет создавать нейросети автоматически

В Гугле говорят, что многие бизнесы могли бы воспользоваться достижениями технологии машинного обучения, например, для автоматической сортировки товаров в интернет-магазине или визуального контроля качества произведенной продукции. Но, говорят, у бизнесов не достаточно хороших программистов, которые могли бы запрограммировать нейросеть. Поэтому Гугл создал технологию AutoML которая создает нейросети автоматически. Работает это так: вы загружаете базу размеченных изображений и AutoML подбирает несколько нейросетей-кандидатов и прогоняет эту базу через каждую сеть, обучая их и выделяя самую подходящую модель. Если верить Google, даже сейчас уровень AutoML уже таков, что она может быть эффективнее экспертов-людей в вопросе поиска лучших подходов для решения конкретных проблем.
2016. Google DeepMind научился говорить

Большинство популярных синтезаторов речи, например, в Siri, Cortana или Google Translate - строят речь из фрагментов записей настоящего человеческого голоса. Этот метод даёт неплохие результаты, но требует наличия в базе данных записей абсолютно всех звуков речи для каждого используемого голоса. Команда Google DeepMind представила технологию WaveNet, которая требует немного исходного материала, наговорённого человеком, и с помощью глубинного обучения нейросети позволяет генерировать любые слова для данного тембра голоса. Лингвистические правила и рекомендации позволяют WaveNet формировать осмысленную речь (т.е. ИИ понимает смысл того, что он говорит). Однако, разработчики говорят, что в ближайшей перспективе внедрение этого метода в Google Assistant вряд ли возможно из-за огромного объёма требуемых вычислений (WaveNet для синтезирования человеческой речи обрабатывает каждую секунду 16000 образцов аудио).
2014. Google добавил поддержку Microsoft Exchange и SharePoint в своем облаке

Облачная платформа Google Cloud Platform теперь поддерживает схему Microsoft License Mobility. Это означает, что компании могут переносить майкрософтовские серверные системы SQL Server, SharePoint и Exchange с локальной инфраструктуры в облако Google, не оплачивая компании Microsoft стоимость дополнительных лицензий. Конечно, приоритетным направлением для переноса майкрософтовских приложений в облако является Microsoft Azure, но крупные компании, как правило, не любят складывать все яйца в одно облако, поэтому Гугловское предложение может быть очень интересным. Google вынужден пойти на такой шаг и продвигать конкурирующие приложения, чтобы повысить привлекательность своей платформы. По данным аналитиков Synergy Research Group за второй квартал 2014 года, доля Google на мировом рынке облачных платформ составляет менее 5%, что не дотягивает до показателей Amazon, Microsoft и IBM.
Отзывы